miércoles, 9 de junio de 2010


Nevada:
Nevada posee las mayores tasas de crecimiento demográfico de todo Estados Unidos, El crecimiento demográfico del estado entre 1990 y 2000 fue enorme, del 66,3%. No obstante, la mayor parte de Nevada está casi despoblada. La mayoría de la población del estado se concentra en los núcleos urbanos de Las Vegas y Carson City-Reno.
Los primeros exploradores
europeos en explorar la zona de Nevada fueron los españoles.
el nombre de Nevada, a causa de la
nieve que cubría los montes en invierno.
La nieve, conocida en algunos países como zapada, es un fenómeno
meteorológico que consiste en la precipitación de pequeños cristales de hielo. Los cristales de nieve adoptan formas geométricas con características fractales y se agrupan en copos. Está compuesta por pequeñas partículas ásperas y es un material granular. Normalmente tiene una estructura abierta y suave, excepto cuando es comprimida por la presión externa.
La nieve se forma comúnmente cuando el
vapor de agua experimenta una alta deposición en la atmósfera a una temperatura menor de 0 °C, y posteriormente cae sobre la tierra.
Nevadas: Son intensas y pueden estar acompañadas de viento, pero son mucho menos fuertes que el Hailstorm.
Las nevadas varían dependiendo del temporal y la localización, incluyendo
latitud geográfica, la elevación y otros factores que afectan al clima en general. En latitudes más cercanas al ecuador, hay menos probabilidades de la caída de nieve. 35° es a menudo referido como un delimitador. Las costas occidentales de los continentes principales siguen siendo lugares sin nieve en latitudes mucho más altas.
Algunas montañas, incluso en, o cerca del
ecuador, tienen una cubierta permanente de nieve en sus partes más altas, incluyendo el monte Kilimanjaro, en Tanzania, y Los Andes, en Suramérica. Inversamente, muchas regiones del ártico y el antártico reciben muy pocas precipitaciones y, por lo tanto, generan muy poca nieve a pesar del intenso frío (por debajo de cierta temperatura, el aire pierde esencialmente su capacidad de trasportar el vapor de agua). Otro ejemplo es el de la ciudad de Nueva York, que se encuentra a una latitud similar a Madrid o incluso más al sur que Roma, que recibe una cantidad de nieve mucho mayor que estas dos últimas; lo que le favorece principalmente es el frío que transporta la corriente marítima del Labrador, que también favorece el aumento de precipitaciones. Madrid y Roma están influenciadas por el Mediterráneo y poseen dos barreras naturales, Pirineos y Alpes respectivamente, por lo que las posibilidades de nieve se reducen notablemente.
Aunque la densidad de la nieve varía extensamente, una guía es que la profundidad de las nevadas es 10 veces mayor que la de las precipitaciones pluviales que contienen la misma masa de
agua.
Las nevadas inesperadas a veces deterioran las infraestructuras e interrumpen los servicios, incluso en las regiones que están acostumbradas a ellas. El tráfico se puede ver entorpecido o incluso detenido totalmente. Las infraestructuras básicas tales como electricidad, teléfono y gas natural pueden ser interrumpidas. Un día nevado es frecuentemente un día en el cual la escuela u otros servicios son cancelados debido a la precipitación. Esto puede suceder incluso en las áreas que tienen por lo general muy poca precipitación de nieve con una acumulación ligera. Cuando la acumulación de nieve es excesiva, a menudo tarda tiempo en fundirse, haciéndose así
neveros.

Terremoto
Un terremoto, también llamado seísmo o sismo (del griego "σεισμός", temblor) o temblor de tierra
es una sacudida del terreno que se produce debido al choque de las placas tectónicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre al superar el estado de equilibrio mecánico. Los más importantes y frecuentes se producen cuando se libera energía potencial elástica acumulada en la deformación gradual de las rocas contiguas al plano de una falla activa, pero también pueden ocurrir por otras causas, por ejemplo en torno a procesos volcánicos, por hundimiento de cavidades cársticas o por movimientos de ladera.
Origen
El origen de los terremotos se encuentra en la acumulación de energía que se produce cuando los materiales del interior de la Tierra se desplazan, buscando el equilibrio, desde situaciones inestables que son consecuencia de las actividades
volcánicas y tectónicas, que se producen principalmente en los bordes de la placa.
Aunque las actividades tectónica y volcánica son las principales causas por las que se generan los terremotos, existen otros muchos factores que pueden originarlos: desprendimientos de rocas en las laderas de las montañas y el hundimiento de cavernas, variaciones bruscas en la
presión atmosférica por ciclones e incluso la actividad humana. Estos mecanismos generan eventos de baja magnitud que generalmente caen en el rango de microsismos, temblores que sólo pueden ser detectados por sismógrafos.
Propagación

Daños producidos por el terremoto del año 1960 en Valdivia, Chile. Es el sismo más fuerte registrado en la historia de la humanidad, con 9,5 grados en la escala de Richter.
El movimiento sísmico se propaga mediante
ondas elásticas (similares al sonido), a partir del hipocentro. Las ondas sísmicas se presentan en tres tipos principales:


  • Ondas longitudinales, primarias o P: tipo de ondas de cuerpo que se propagan a una velocidad de entre 8 y 13 km/s y en el mismo sentido que la vibración de las partículas. Circulan por el interior de la Tierra, atravesando tanto líquidos como sólidos. Son las primeras que registran los aparatos de medida o sismógrafos, de ahí su nombre "P".



  • Ondas transversales, secundarias o S: son ondas de cuerpo más lentas que las anteriores (entre 4 y 8 km/s) y se propagan perpendicularmente en el sentido de vibración de las partículas. Atraviesan únicamente los sólidos y se registran en segundo lugar en los aparatos de medida.



  • Ondas superficiales: son las más lentas de todas (3,5 km/s) y son producto de la interacción entre las ondas P y S a lo largo de la superficie de la Tierra. Son las que producen más daños. Se propagan a partir del epicentro y son similares a las ondas que se forman sobre la superficie del mar. Este tipo de ondas son las que se registran en último lugar en los sismógrafos.

Terremotos inducidos



Hoy en día se tiene la certeza de que si se inyectan en el subsuelo, ya sea como consecuencia de la eliminación de desechos en solución o en suspensión, o por la extracción de hidrocarburos, se provoca, con un brusco aumento de la presión intersticial, una intensificación de la actividad sísmica en las regiones ya sometidas a fuertes tensiones. Pronto se deberían controlar mejor estos sismos inducidos y, en consecuencia, preverlos, tal vez, pequeños sismos inducidos pudieran evitar el desencadenamiento de un terremoto de mayor magnitud.
Escalas de Magnitudes e Intensidades.



  • La Escala sismológica de Richter, también conocida como escala de magnitud local (ML), es una escala logarítmica arbitraria que asigna un número para cuantificar el efecto de un terremoto.



Existen varias escalas diferentes para clasificar la fuerza de los tornados. La escala Fujita-Pearson los evalúa según el daño causado, y ha sido reemplazada en algunos países por la escala Fujita mejorada, una versión actualizada de la anterior. Un tornado F0 ó EF0, la categoría más débil, causa daño a árboles pero no a estructuras. Un tornado F5 ó EF5, la categoría más fuerte, arranca edificios de sus cimientos y puede deformar grandes rascacielos. La escala TORRO va del T0 para tornados extremadamente débiles al T11 para los tornados más fuertes que se conocen.[9] También pueden analizarse datos obtenidos de radares Doppler y patrones de circulación dejados en el suelo (marcas cicloidales) y usarse fotogrametría para determinar su intensidad y asignar un rango.


Maremoto
Un maremoto o tsunami (del
japonéstsu: ‘puerto’ o ‘bahía’, y nami: ‘ola’; literalmente significa ‘gran ola en el puerto’) es una ola o un grupo de olas de gran energía y tamaño que se producen cuando algún fenómeno extraordinario desplaza verticalmente una gran masa de agua. Se calcula que el 90% de estos fenómenos son provocados por terremotos, en cuyo caso reciben el nombre, más preciso, de «maremotos tectónicos».
La
energía de un tsunami depende de su altura (amplitud de la onda) y de su velocidad. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas (en el maremoto del océano Índico de 2004 hubo 7 picos). Este tipo de olas remueven una cantidad de agua muy superior a las olas superficiales producidas por el viento.
Causas de los maremotos
Como ya se mencionó, los terremotos son la gran causa de los maremotos. Para que un terremoto origine un maremoto, el fondo marino debe ser movido abruptamente en sentido vertical, de modo que el océano es impulsado fuera de su equilibrio normal. Cuando esta inmensa masa de agua trata de recuperar su equilibrio, se generan las olas. El tamaño del maremoto estará determinado por la magnitud de la deformación vertical del fondo marino. No todos los terremotos generan maremotos, sino sólo aquellos de magnitud considerable (primera condición), que ocurren bajo el lecho marino (segunda condición) y que sean capaces de deformarlo (tercera condición). Si bien cualquier océano puede experimentar un maremoto, es más frecuente que ocurran en el Océano Pacífico, cuyas márgenes son más comúnmente asiento de terremotos de magnitudes considerables (especialmente las costas de Chile, Perú y Japón). Además, el tipo de falla que ocurre entre las
placas de Nazca y placa sudamericana, llamada falla de subducción, esto es, que una placa se va deslizando bajo la otra, hacen más propicia la deformidad del fondo marino y, por ende, el surgimiento de los maremotos.
A pesar de lo dicho anteriormente, se han registrado maremotos devastadores en los océanos Atlántico e Indico, así como en el mar Mediterráneo. Un gran maremoto acompañó los terremotos de Lisboa en 1755, el del Paso de Mona de Puerto Rico en 1918, y el de Grand Banks de Canadá en 1929.
Las avalanchas, erupciones volcánicas y explosiones submarinas pueden ocasionar maremotos que suelen disiparse rápidamente, sin alcanzar a provocar daños en sus márgenes continentales.

Ciclón
En
meteorología ciclón usualmente suele aludir a vientos intensos acompañados de tormenta; aunque también designa a las áreas del planeta en las cuales la presión atmosférica es baja; en esta segunda acepción un ciclón es el opuesto-complementario de un anticiclón y tiene fundamental importancia en la generación de las corrientes atmosféricas. En efecto un área de bajas presiones genera vientos al atraer las masas de aire atmosférico desde las zonas de altas presiones o anticiclónicas.
Etimología
La palabra "ciclón" fue usada por primera vez por
Henry Piddington alrededor del año 1840. Tiene su etimología en el griegoκυκλών/ kyklónκυκλώνας/ kiklónas - círculo en movimiento.
Estructura
Estructuralmente, un ciclón es una gran columna de aire coronada por un gran disco de nubes, viento y actividad tormentosa. La principal fuente de
energía es la liberación del calor de condensación del vapor de agua. Por eso, un ciclón puede considerarse como una especie de turbina energética. En el Hemisferio Norte, sus vientos giran en dirección contraria a las manecillas del reloj -antihorariamente-; mientras que en el Hemisferio Sur, sus vientos giran horariamente o en la dirección de las manecillas del reloj (Ver: Fuerza de Coriolis).
Tipos
Ciclones tropicales
Los ciclones tropicales (también conocidos como tormentas tropicales,
huracanes y tifones) son ciclones que se forman generalmente en océanos calientes (generalmente tropicales) y de ahí succionan la energía de la evaporación y la condensación. Son característicos por tener una fuerte área de baja presión en la superficie y una alta presión en los niveles altos de la atmósfera. Se originan por la formación de centros de baja presión atmosférica en el mar.
Son altamente destructivos, ya que producen fuertes lluvias con vientos de al menos 120 km/h, llegando sus ráfagas, en algunas ocasiones, a más de 300 km/h.

Ciclones supertropicales
Es un ciclón que se forma a latitudes mayores a 30°; se compone por dos o más masas de aire, por lo tanto se asocia a uno o más frentes.
La familia de ciclones extratropicales es tan amplia que normalmente se intenta definir una subfamilia. Pero ésta es una tarea muy difícil debido a que, de hecho, cada ciclón es único e irrepetible. Un estudio muy amplio sobre ciclones muestra, sin embargo, que se pueden observar características comunes entre ellos, pudiéndose hacer una clasificación.
Uno de los criterios más utilizados para la clasificación es el mecanismo inicial involucrado en el desarrollo del ciclón, que es el criterio utilizado en este módulo.
Ciclones subtropicales
Un ciclón subtropical es un sistema meteorológico que tiene algunas características de un ciclón tropical y algunas de un ciclón extratropical. Suelen formarse en latitudes cercanas al ecuador.
Ciclones polares
Los ciclones polares son similares en comparación y tamaño a los ciclones tropicales, aunque generalmente tienen una vida más corta.
Los
ciclones polares tienen típicamente varios cientos de kilómetros de diámetro y vientos fuertes (aunque generalmente no tienen la intensidad de un huracán). A diferencia de los típicos ciclones tropicales estos se desarrollan con una extrema rapidez, alcanzando su fuerza máxima en 24 horas.
Un sistema de baja presión saliendo de la costa sureste de
Islandia.
Ciclones árticos
Los
ciclones árticos poseen extensas áreas de baja presión en regiones polares que tienen una débil rotación ciclónica con una máxima explosión de 120 metros cúbicos
Mesociclones
Un
mesociclón es un vórtice de aire, aproximadamente de 2 a 10 km de diámetro (mesoescala en meteorología), dentro de un tipo de tormentas conocidas técnicamente como supercélulas debido a su autonomía. Cuando un mesociclón muere, si la nube precipita, ésta transmite su inercia de rotación en capas más bajas comprimiéndose en forma de nube embudo lo cual hace que se incremente la rotación formando un tornado.
Los mesociclones se forman cuando hay fuertes cambios en la velocidad y/o dirección del viento a diferentes niveles de
presión atmosférica, lo cual se conoce como cizalladura del viento. La presencia de los mesociclones sólo se puede verificar verdaderamente con un Radar Doppler.

Cambio climático
Imagen actual de la superficie de
Venus, un planeta que anteriormente se pareció en muchos aspectos a la Tierra actual.
Se llama cambio climático a la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros climáticos: temperatura, precipitaciones, nubosidad, etc. En teoría, son debidos tanto a causas naturales (Crowley y North, 1988) como antropogénicas (Oreskes, 2004).
El término suele usarse de forma poco apropiada, para hacer referencia tan sólo a los cambios climáticos que suceden en el presente, utilizándolo como sinónimo de
calentamiento global. La Convención Marco de las Naciones Unidas sobre el Cambio Climático usa el término cambio climático sólo para referirse al cambio por causas humanas:
Por "cambio climático" se entiende un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos comparables
Como se produce constantemente por causas naturales se lo denomina también variabilidad natural del clima. En algunos casos, para referirse al cambio de origen humano se usa también la expresión cambio climático
antropogénico.
Además del calentamiento global, el cambio climático implica cambios en otras variables como las
lluvias globales y sus patrones, la cobertura de nubes y todos los demás elementos del sistema atmosférico. La complejidad del problema y sus múltiples interacciones hacen que la única manera de evaluar estos cambios sea mediante el uso de modeloscomputacionales que simulan la física de la atmósfera y de los océanos. La naturaleza caótica de estos modelos hace que en sí tengan una alta proporción de incertidumbre (Stainforthet ál., 2005) (Roe y Baker, 2007), aunque eso no es óbice para que sean capaces de prever cambios significativos futuros (Schnellhuber, 2008) (Knutti y Hegerl, 2008) que tengan consecuencias tanto económicas (Stern, 2008) como las ya observables a nivel biológico (Waltheret ál., 2002)(Hughes, 2001).

Lluvias Acidas

Efectos de la lluvia ácida en un bosque de la República Checa.
La lluvia ácida se forma cuando la
humedad en el aire se combina con los óxidos de nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. En interacción con el vapor de agua, estos gases forman ácido sulfúrico y ácidos nítricos. Finalmente, estas sustancias químicas caen a la tierra acompañando a las precipitaciones, constituyendo la lluvia ácida.
Los contaminantes atmosféricos primarios que dan origen a la lluvia ácida pueden recorrer grandes distancias, trasladándolos los vientos cientos o miles de kilómetros antes de precipitar en forma de rocío, lluvia, llovizna, granizo, nieve, niebla o neblina. Cuando la precipitación se produce, puede provocar importantes deterioros en el ambiente.
La lluvia normalmente presenta un
pH de aproximadamente 5.65 (ligeramente ácido), debido a la presencia del CO2 atmosférico, que forma ácido carbónico, H2CO3. Se considera lluvia ácida si presenta un pH de menos de 5 y puede alcanzar el pH del vinagre (pH 3). Estos valores de pH se alcanzan por la presencia de ácidos como el ácido sulfúrico, H2SO4, y el ácido nítrico, HNO3. Estos ácidos se forman a partir del dióxido de azufre, SO2, y el monóxido de nitrógeno que se convierten en ácidos.
Los hidrocarburos y el carbón usados como fuente de energía, en grandes cantidades, pueden también producir óxidos de
azufre y nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo.
Efecto de Invernadero
Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de una atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la
radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con la mayoría de la comunidad científica, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.
Este fenómeno evita que la energía solar recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un
invernadero.
InversionTermica
Una inversión térmica es una derivación del cambio normal de las propiedades de la atmósfera con el aumento de la altitud. Usualmente corresponde a un incremento de la temperatura con la altura, o bien a una capa (capa de inversión) donde ocurre el incremento.
[1] En efecto, el aire no puede elevarse en una zona de inversión, puesto que es más frío y, por tanto, más denso en la zona inferior.
Una inversión térmica puede llevar a que la contaminación aérea, como el
smog, quede atrapada cerca del suelo, con efectos nocivos para la salud. Una inversión también puede detener el fenómeno de convección, actuando como una capa aislante. Si por algún motivo esta capa se rompe, la convección de cualquier humedad presente puede ocasionar violentos temporales.[cita requerida] También este fenómeno puede llevar a una tormenta de hielo en climas fríos.
Una inversión térmica es una derivación del cambio normal de las propiedades de la atmósfera con el aumento de la altitud. Usualmente corresponde a un incremento de la temperatura con la altura, o bien a una capa (capa de inversión) donde ocurre el incremento.
[1] En efecto, el aire no puede elevarse en una zona de inversión, puesto que es más frío y, por tanto, más denso en la zona inferior.
Una inversión térmica puede llevar a que la contaminación aérea, como el
smog, quede atrapada cerca del suelo, con efectos nocivos para la salud. Una inversión también puede detener el fenómeno de convección, actuando como una capa aislante. Si por algún motivo esta capa se rompe, la convección de cualquier humedad presente puede ocasionar violentos temporales. También este fenómeno puede llevar a una tormenta de hielo en climas fríos.

La Niña
Tanto
El Niño como La Niña, son los ejemplos más evidentes de las oscilaciones climáticas globales, siendo parte fundamental de un vasto y complejo sistema de fluctuaciones climáticas. La Niña se caracteriza por temperaturas frías y perdurables, si se le compara con El Niño ya que éste se caracteriza por temperaturas oceánicas inusualmente calientes sobre el Océano Pacífico Ecuatorial.
Los episodios de La Niña también producen cambios a gran escala en los vientos atmosféricos sobre el
Océano Pacífico Tropical, incluyendo un incremento en la intensidad de los vientos Alisios del Este (Este-Oeste) en la atmósfera baja sobre el océano Pacífico Oriental, y de los del oeste en la atmósfera superior. Estas condiciones reflejan cambios significativos en la circulación ecuatorial de Walker.
Los episodios Cálido/El Niño y Frío/La Niña, forman parte de un ciclo conocido como
El Niño Oscilación del Sur, ENSO. El ciclo tiene un período medio de duración de aproximadamente cuatro años, aunque en el registro histórico los períodos han variado entre 2 y 7 años.
Durante un episodio de La Niña, es típico observar condiciones más secas respecto a lo normal sobre el océano Pacífico Ecuatorial Central, debido a un debilitamiento de la corriente en chorro durante los meses de diciembre a febrero, y por el fortalecimiento de los sistemas
monzónicos en Australia/Sudeste de Asia, América del Sur/Centroamérica y África.
En las primeras fases de los episodios de La Niña, la
termoclina (isoterma de 20 °C que separa las capas superficiales del océano de las más profundas) se localiza a poca profundidad respecto a lo normal, principalmente en los sectores del océano Pacífico Central y frente a las costas de América del Sur. Durante la fase madura la termoclina gradualmente se profundiza en la parte occidental del Océano Pacífico y en el sector Central en las últimas fases de los episodios.
Duración y frecuencia
El fenómeno la Niña puede durar de 9 meses a 3 años y según su intensidad se clasifica en débil, moderado y fuerte.
Es más fuerte mientras menor es su duración, y su mayor impacto en las condiciones meteorológicas se observa en los primeros 6 meses de vida del fenómeno. Se presenta con menos frecuencia que el Niño y se dice que ocurre cada 3 a 7 años.
Según la NOAA de
1950 se han presentado 8 fenómenos de la Niña.
Detección de los fenómenos
El Programa Mundial de Investigación Climática de la OMM a través del Programa de Océanos Tropicales y la Atmósfera Mundial monitorea el
Océano Pacífico Tropical utilizando boyas fijas, boyas a la deriva, mareógrafos, batí-termógrafos y satélites, los cuales generan información para conocer las condiciones actuales de este y alimentar los modelos para la predicción del futuro comportamiento y características de La Niña.
Su impacto en el clima global
En los
trópicos las variaciones experimentadas en el clima global por efecto del fenómeno de La Niña son radicalmente opuestas a las variaciones ocasionadas por El Niño.
En latitudes más altas que las de
Nicaragua, tanto El Niño como La Niña son parte de los diferentes factores que influyen en el clima. En estas latitudes los impactos de El Niño y La Niña se aprecian más claramente en la estación invernal (diciembre-febrero). En el continente americano durante los años La Niña, las temperaturas del aire de la estación invernal se tornan más calientes de lo normal en el Sudeste y más frías que lo normal en el Noreste.
En
América Central es bastante probable esperar condiciones relativamente más húmedas de lo normal, principalmente sobre las zonas costeras del mar Caribe. En América del Sur predominan las condiciones más secas y más frescas de lo normal sobre Ecuador y Perú, así como condiciones más húmedas en el Nordeste de Brasil.
Eventos de mayor duración y mayor intensidad
De acuerdo a los registros de NOAA del período
1950-1991, los eventos La Niña de mayor duración han sido los ocurridos en 1955-1956 y en 1974-1975, siendo más fuerte este último. El evento de mayor intensidad fue el de 1988-1989, a pesar de que su duración promedio fue de 12 a 14 meses. Y en 2007 en Perú que duro 2 meses.